Influence of fabrication method on the structure and thermal expansion property of ZrWMoO₈ and its composites

Qin-Qin Liu · Xiao-Nong Cheng · Juan Yang · Xiu-Juan Sun

Received: 25 May 2010/Accepted: 6 September 2010/Published online: 21 September 2010 © Springer Science+Business Media, LLC 2010

Abstract We report the preparation of ZrWMoO₈ and its composites with near zero thermal expansion property using in situ solid state reaction or co-precipitation route. The aim of this study is to compare the influence of the fabrication method on the structure and thermal expansion of the products. The composition of the obtained powders was characterized by X-ray diffraction (XRD) and thermal expansion property was investigated by Thermomechanical Analysis (TMA), respectively. The results indicate that the room temperature structure of ZrWMoO₈ depends on the preparation method, and the structure can be indexed either as α -ZrW₂O₈ structure for in situ solid state reaction or as β -ZrW₂O₈ structure for co-precipitation route. The participation of the water in the reaction process was speculated to be the reason for the difference structure. However, no matter which structure ZrWMoO₈ adopted, it exhibits excellent negative thermal expansion property and can be utilized to decrease the thermal expansion of ZrO_2 . The only difference is that the CTE curves of ZrO₂ composites with ZrWMoO₈ adopting α-ZrW₂O₈ structure have a discontinuity at about 150 °C due to the α - β phase transition while the other curves are linear.

Introduction

Negative thermal expansion (NTE) compounds are useful for producing composites that have no or very low thermal expansion. Some silicates such as eucriptite and spodumen [1, 2] and some titanates [3] are found to show NTE property. However, NTE in these materials is generally restricted to very narrow temperatures and is anisotropic. In 1996, cubic ZrW_2O_8 was found to show isotropic NTE from 0.3 to 1050 K [4], this material has the potential to make composites with no expansion and is expected to be used widely in the electronic and ceramic industries.

However, there are some drawbacks to this material. One is the order–disorder (α to β) phase transition around 433 K, which changes the linear coefficient of thermal expansion (CTE) from -8.8 to -4.7×10^{-6} K⁻¹ [5, 6]. This discontinuity does exist in the thermal expansion curve of ZrO_2/ZrW_2O_8 composite [7, 8], which might cause thermal stress and makes ZrW2O8 difficult to be commercially used. Another is a phase transition to an orthorhombic structure $(\gamma - ZrW_2O_8)$ at 0.21 GPa [9] that leads to invalidation during the processing of the Cu/ZrW_2O_8 composites [10]. Furthermore, finite element analysis finds that ZrW₂O₈-containing composites can have stresses in excess of the material strength [11]. These defects might be improved by substituting Mo for W in ZrW₂O₈, which could reduce the order-disorder phase transition temperature under room temperature (200 K for ZrWMoO₈) and increase the compression resistance [12–14].

Although $ZrWMoO_8$ with linear CTE above room temperature is more suitable for practical application, there is not any report on utilizing it to fabricate composites with near zero CTE until now. The dehydration precursor method [15] is the most utilized synthesis method, but

Electronic supplementary material The online version of this article (doi:10.1007/s10853-010-4905-6) contains supplementary material, which is available to authorized users.

Q.-Q. Liu (⊠) · X.-N. Cheng · J. Yang · X.-J. Sun School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China e-mail: liu_qin_qin@126.com

resulted ZrWMoO₈ can not be utilized as an additive to decrease thermal expansion as it shows abnormal positive thermal expansion property (PTE) at room temperature [16]. It is found that the existence of the water is the reason for the abnormal PTE, in this study, ZrWMoO₈ and its composites with ZrO₂ were first synthesized by in situ solid state method to refrain from drawing into the water. For comparison, co-precipitation route was also utilized to fabricate ZrWMoO₈ and its composites, the influence of the preparation method on the structure and thermal expansion properties of the ZrWMoO₈ and its composites were studied.

Experimental

Preparation of $ZrWMoO_8$ and it composites by in situ solid state method

Analytical reagent chemical agents (ZrO₂, WO₃, and Mo O₃, including ammonium tungstate (N₅H₃₇W₆O₂₄·H₂O), ammonium molybdate (N₅H₃₇Mo₆O₂₄·H₂O) used in coprecipitation method) purchased from raw Sinopharm Chemical Reagent Co., Ltd were used as raw materials. ZrO₂, WO₃, and MoO₃ were weighted at different weight ratios listed in the Table 1, and mixed with a little ethanol. Then, the mixture was milled in an agate ball mill for 24 h to reduce the mean size, followed by calcination at 600 °C for 4 h, at 800 °C for 8 h, then at 900 °C for 12 h with intermittent ground for 40 min. After that, the obtained powders were cold pressed into a cylinder at 20 Mpa with the size of Φ 5 × 30 mm and sintered at 1020 °C for 1.5 h in air in a hermetical Pt crucible with a cover, then quenched in cold water.

Preparation of ZrWMoO₈ and it composites by co-precipitation route

Zirconium oxynitrate [ZrO(NO₃)₂·5H₂O, 99%, Zibo Rongruida Micro Materials Plant, China], N₅H₃₇W₆O₂₄·H₂O, and N₅H₃₇Mo₆O₂₄·H₂O were weighted according to ratio listed in the Table 2. Zr, W, and Mo solution were prepared by dissolving the above raw materials in distilled water

Sample	Composition	$ZrO_{2}\left(g ight)$	$WO_3(g)$	MoO ₃ (g)
G1	α-ZrWMoO ₈	12.322	23.184	14.395
G2	α-ZrWMoO ₈ /60 wt% ZrO ₂	18.713	8.694	5.398
G3	$\alpha\text{-}ZrWMoO_8/33~wt\%~ZrO_2$	14.990	9.272	5.758
G4	$\alpha\text{-}ZrWMoO_8/25~wt\%~ZrO_2$	12.913	9.272	5.758

separately, the W solution and Mo solution were mixed, and then the mixture solution and Zr solution were added at the same time to the 25-mL distilled water under vigorous stirring, a white precipitate was produced. Stirring the above mixture for another 2 h, aging for 12 h, and drying at 80 °C, the white precursor was obtained. Then, these precursor powders were calcined at 600 °C for 4 h, cooled in air, ground, pressed, and sintered in the same way as above method.

Experimental techniques

The specimens were characterized by X-ray Powder diffraction (XRD) using Rigaku D/max2500 (Cu $K\alpha_1$ 1.54059 Å, 40 kV, 200 mA, 10–50°, 5°/min). The thermal expansion coefficients were measured by thermomechanical analysis (TMA) using NETZSCH DIL 402EP. The microstructure was observed by scanning electron microscope (SEM) using JSM-7001F JEOL. The composition was analyzed by energy dispersive spectrometer (EDS) using OXFORD INCA.

Results and discussion

Sample G1 as prepared by in situ solid state method is calcined at different temperatures to determine a proper sintering temperature, the XRD patterns of the resulted products are shown in Fig. 1. As we can see, the product obtained after calcination at 600 °C is the mixture of ZrO₂, WO₃, and MoO₃ (Fig. 1a), indicating no chemical reaction happened. Further heating at 800 °C yields trigonal ZrWMoO₈ (Fig. 1b) which could partly transform to cubic ZrWMoO₈ after sintering at higher temperature (900 °C, Fig. 1c). The XRD pattern of powders synthesized at 1020 °C shown in Fig. 1d is identical to that of α -ZrW₂O₈, indicating that the room temperature structure of ZrWMoO₈ synthesized using in situ solid state method can be identified as a single phase having α -ZrW₂O₈ structure. This phenomenon is different with the literature [17, 18]which reports that the room temperature structure of ZrWMoO₈ is indexed as β -ZrW₂O₈ structure whose XRD pattern has no diffraction peaks (111), (221), (310), (410), and (331), and the different fabrication method utilized is speculated to be the reason. This study is the first paper reporting about $ZrWMoO_8$ with α - ZrW_2O_8 structure obtained at room temperature.

The other samples (G2, G3, G4, C1, C2, and C3) are calcined at 1020 °C, and the XRD patterns of the resulted products are shown in Fig. 2. The diffraction peaks of the composite sample fabricated using in situ solid state method could be indexed as either pure α -ZrWMoO₈ or ZrO₂'s characteristic peaks, illustrating that the composition is

Table 2 The mass of rawmaterials applied in co-precipitation route

Sample	Composition	$N_5H_{37}W_6O_{24}$ ·H ₂ O (g)	$N_5H_{37}Mo_6O_{24}$ ·H ₂ O (g)	$\frac{\text{ZrO(NO}_3)_2 \cdot 5\text{H}_2\text{O}}{(g)}$
C1	β -ZrWMoO ₈	7.606	10.593	24.253
C2	β-ZrWMoO ₈ /50 wt% ZrO ₂	3.803	2.648	19.957
C3	β -ZrWMoO ₈ /33 wt% ZrO ₂	2.535	1.765	29.237

Fig. 1 XRD patterns of sample G1 calcined at different temperatures

 α -ZrWMoO₈ and ZrO₂ without any impurities. Further observation can find that the peak intensities of α -ZrW-MoO₈ and ZrO₂ are different from each other, which indicates different weight ratios of α -ZrWMoO₈ and ZrO₂ in the composites.

It is noteworthy that the XRD pattern of ZrWMoO₈ obtained by co-precipitation route is obviously different from that obtained by in situ solid state method. The disappearance of the diffraction peaks of (111), (221), (310), (410), and (331) shows that ZrWMoO₈ fabricated by co-precipitation route adopts the disordered β -ZrW₂O₈ structure. The composition of the composite samples fabricated using co-precipitation route can be characterized to be β -ZrWMoO₈ and ZrO₂. This result is in agreement with the previous study [16], where ZrWMoO₈ obtained using dehydration precursor method adopts β -ZrW₂O₈ structure at room temperature; therefore, the fabrication method was supposed to have a great influence on the structure of the resulted ZrWMoO₈. Solid materials were utilized as initial reaction material for solid state reaction method, while the other two methods (dehydration precursor method and the co-precipitation route) were both taken place in water solution which was testified to have an effect on the structure of $ZrWMoO_8$ [16]. It can be concluded that ZrWMoO₈ prepared without participating of water adopts α -ZrW₂O₈ structure at room temperature, otherwise, adopts β -ZrW₂O₈ structure. Based on these results, it can be inferred that the water must have an important effect in the reaction process and the structure of resulted products, and

Fig. 2 XRD patterns of samples calcined at 1020 °C for 1.5 h using **a** in situ solid state reaction method and **b** co-precipitation route

the detailed mechanism is still under researching and will be reported later.

The thermal expansion property of the composite was measured by TMA and presented in Fig. 3, and the specific values of the CTE were listed in Table 3. Compared with ZrO_2 , all of the composites fabricated by the above two methods possess lower thermal expansion, suggesting that the addition of ZrWMoO₈ can decrease the thermal expansion effectively. Special attention should be paid to sample G2 and C3, both of them exhibit near zero thermal expansion property over the entire measurement temperature range. Figure 4 shows the SEM images of sample G2 and C3, it can be clearly seen that the composites prepared

Fig. 3 Thermal expansion curves of composites

by in situ solid state method are micro-structurally different from the co-precipitation method. EDS results indicate that the larger one is $ZrWMOO_8$ and the smaller one is ZrO_2 . Both of the samples are not dense due to the insufficient sintering of ZrO_2 which needed to be sintered at much higher temperatures (2100 °C) than $ZrWMOO_8$ (1020 °C).

What still deserves to be mentioned is an obvious difference among the thermal expansion curves of the

rig. 5 Thermal expansion curves of composites

composite samples prepared by different methods, a discontinuity around 150 °C exists in the curves of the composites prepared by in situ solid state method, while the others are linear. A similar discontinuity observed in the thermal expansion curves of ZrO_2/α - ZrW_2O_8 composites is confirmed to be caused by the α - β phase transition of α - ZrW_2O_8 , so it is speculated that similar phase transition might occur in α - $ZrWMoO_8$ and lead to the variation of thermal expansion.

 α -ZrWMoO₈ is tested by in situ XRD, and the results are shown in Fig. 5, it can be seen that (111), (221), (310), (410), and (331) peaks existing in the XRD pattern at room temperature are progressively decrease on warming and disappear at 150 °C. This behavior is same with that of the α - β phase transition of ZrW₂O₈, suggesting that α -ZrW-MoO₈ transforms to β -phase at 150 °C. Besides that, the diffraction peaks slowly shrift to right during the temperature range from room temperature (r.t.) to 700 °C, which can be clearly seen in the partial enlarged drawing (Fig. 5b), this behavior confirms that α -ZrWMoO₈ contracts upon heating. Otherwise, the material is stable up to the temperatures lower than 700 °C, then it decomposes into triclinic WO₃, tetragonal MoO₃, and monoclinic ZrO₂ (Fig. 5c). The in situ XRD results [see Supporting Information, Figure S1 (a)] of β -ZrWMoO₈ (Sample C1) suggest that it retains disordered β structure throughout the temperature range from r.t. to 600 °C. Sample C1 is further calcined at 150 °C for 3 h and cooled in air, the resulted products [see Supporting Information, Figure S1 (b)] still adopt β -ZrWMoO₈ structure, these results mean that even

 Table 3 Cell parameter and thermal expansion coefficient of sample G1 and C1

Sample	Cell parameter at r.t. (Å)	Micro CTE (× 10^{-6} °C ⁻¹)			Macro CTE (× $10^{-6} \circ C^{-1}$)		
		30–150 °C	150–600 °C	30–600 °C	30–150 °C	150–600 °C	30–600 °C
G1	9.152	-7.332	-4.156	-6.543	-8.143	-3.977	-5.944
C1	9.133	_	-	-4.672	-	-	-4.143

Fig. 4 SEM images of ZrWMoO₈ a G2 and b C3

Fig. 5 XRD patterns of $\alpha\text{-}ZrWMoO_8$ characterized at different temperatures

at 600 °C there is an unequivocal evidence of its stabilization.

Cell parameters of α and β -ZrWMoO₈ are calculated using the PowderX software, and the values at r.t. are given

Table 4 Thermal expansion coefficient of composites

Sample	Average thermal expansion coefficient (× $10^{-6} \circ C^{-1}$)				
	30–150 °C	150–600 °C	30–600 °C		
G2	-3.302	1.312	0.472		
G3	-4.356	-1.171	-2.017		
G4	-4.654	-2.372	-3.437		
C2	_	_	-0.61		
C3	_	-	1.52		

Fig. 6 a Micro and b macro thermal expansion curves of α -ZrWMoO₈ and β -ZrWMoO₈

in Table 4. The cell parameter of β -ZrWMoO₈ correlated with the literature (9.147 Å) [18] is much smaller than that of α -ZrWMoO₈. The small differences between α and β phase can be explained by taking into account of the different directions of the W(Mo)O₄ tetrahedra lying along the threefold axis in the structure [19].

The micro CTE is calculated using the data of cell parameters of α and β -ZrWMoO₈ at different temperatures, the results are shown in Fig. 6 and listed in Table 4. On heating, a continuous contraction is observed for both of the samples. An apparent discontinuity existing in the thermal expansion curve for α -ZrWMoO₈ structure (around 150 °C) is due to the α - β phase transition, while the other is linear. The macro CTE curves exhibit the same behavior, and the slight difference of the data might be caused by the different testing methods. The results confirm that the existence of the α - β phase transition for α -ZrWMoO₈

causes the deviation of the thermal expansion curves of itself and its composites, which suggests that β -ZrWMoO₈ with linear CTE above room temperature may have greater practical importance as it can refraining from generating thermal mismatch stress caused by variation of CTE of the component material.

Conclusion

Preparation method has a great influence on the structure of the ZrWMoO₈, and the possible reason is that water may take part in the reaction process and thus influence the structure of resulted products. β -ZrWMoO₈ showing linear NTE property above room temperature only can be synthesized using co-precipitation route, it is an optimal addition to decrease the thermal expansion of ZrO₂ in practical application as it can avoid the thermal stress brought out by the α - β phase transition of α -ZrWMoO₈.

Acknowledgements The authors thank the National Natural Science Foundation of China (No. 50772044) and Doctoral Fund of Ministry of Education of China (No. 200802990001).

- 4. Mary TA, Evans JSO, Vogt T, Sleight AW (1996) Science 272:92
- Pryde AKA, Hammonds KD, Dove MT, Heine V, Gale JD, Warren MC (1996) J Phys Condens Matter 8:10973
- 6. Sleight AW (1998) Inorg Chem 37:2854
- 7. Sun L, Sneller A, Kown P (2008) Compos Sci Technol 68:3425
- Yang XB, Xu J, Li HJ, Li HJ, Cheng XN, Yan XH (2007) J Am Ceram Soc 90(6):1953
- 9. Evans JSO, Hu Z, Jorgensen JD, Argyriou DN, Short S, Sleight AW (1997) Science 275:61
- 10. Verdon C, Dunand DC (1997) Scr Mater 36(9):1075
- Jakubinek MB, Whitman CA, White MA (2010) J Therm Anal Calorim 99(1):165
- Evans JSO, Hanson PA, Ibberson RM, Duan N, Kameswari U, Sleight AW (2000) J Am Chem Soc 122:8694
- Hampson MH, Allen S, King IJ, Crossland CJ, Hodgkinson P, Harris RK, Fayon F, Evans JSO (2005) Solid State Sci 7:819
- Liu QQ, Yang J, Sun XJ, Cheng XN (2007) J Mater Sci 42(7):2528. doi:10.1007/s10853-007-1563-4
- 15. Closmann C, Sleight AW, Haygarth JC (1998) J Solid State Chem 139:424
- Liu QQ, Yang J, Sun XJ, Cheng XN (2008) Phys status solidi b 245(11):2477
- Mancheva M, Iordanova R, Dimitriev Y, Avdeev G (2009) J Non-Cryst Solids 355(37-42):1904
- Kameswari U, Sleight AW, Evans JSO (2000) Int J Inorg Mater 2(4):333
- Cao D, Bridges F, Kowach GR, Ramirez AP (2002) Phys Rev Lett 89(21):215902-1

References

- 1. Ostertag W, Fischer GR, Williams JP (1968) J Am Ceram Soc 51:651
- 2. Schultz H (1974) J Am Ceram Soc 57:313
- Buessem WR, Thielke NR, Sarakauskas RV (1952) Ceram Age 60:38